2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. ulsorily draw diagonal cross lines on the remaining blar Important Note: 1. On completing your answers, c

M.Tech. Degree Examination, June/July 2011 Linear Algebra

Time: 3 hrs.

Note: Answer any FIVE full questions.

Max. Marks:100

1 a. Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{3} \end{bmatrix}.$$
 (08 Marks)

- b. If A, B, C are matrices over the field F such that the products BC and A(BC) are defined, then so are the products AB, (AB)C then prove that A(BC) = (AB)C. (06 Marks)
- c. Solve the following system of equations:

$$x_1 - 2x_2 + x_3 = 0$$
 $2x_2 - 8x_3 = 8$
 $-4x_1 + 5x_2 + 9x_3 = -9$. (06 Marks)

2 a. Solve the system of linear equations using LU factorization method with $U_{i1} = 1$

$$x_1 + 2x_2 + 3x_3 = 0$$

 $2x_1 + 2x_2 + 3x_3 = 3$
 $-x_1 - 3x_2 = 2$

(10 Marks)

- b. If W_1 and W_2 are finite dimensional subspaces of a vector space V_1 then $W_1 + W_2$ is finite dimensional and dim $W_1 + \dim W_2 = \dim (W_1 \cap W_2) + \dim (W_1 + W_2)$. (08 Marks)
- c. Define a linearly dependent set and basis of vector space V. (02 Marks)
- a. Let V be finite dimensional vector space over the field F and let {α₁...α_n} be an ordered basis for V. Let W be a vector space over the same field F and let {β₁...β_n} be any vectors in W. Then show that there is precisely one linear transformation T from V in to W such that T_{αj} = β_j, j = 1, 2, ...n. (08 Marks)
 - b. Given a matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$. Determine the linear transformation $T : V_3(R) \rightarrow V_2(R)$ relative to the basis β_1 and β_2 given by $\beta_1 = \{(1, 1, 1) (1, 2, 3) (1, 0, 0)\}, \beta_2 = \{(1, 1) (1, -1)\}.$
 - c. Let $T: V \to W$ be a linear transformation, then
 - i) R(T) is subspace of W
 - ii) N(T) is a subspace V
 - iii) T is one to one iff $N(T) = \{0\}$.

(07 Marks)

(05 Marks)

- 4 a. If T is a linear transformation from V into W where V and W are vector spaces over the field F and V is finite dimensional then prove that rank (T) + nullity (T) = dim V. (10 Marks)
 - b. Find the range, null space, rank and nullity of linear transformation $T: V \to W$ defined by T(x, y, z) = (y x, y z). Also verify rank nullity theorem. (05 Marks)
 - c. Let V and W be vector spaces over the field. Let T and U be linear transformations from V into W. Show that the function T + U defined by $(T + U) \alpha = T\alpha + U\alpha$ is a linear transformation. (05 Marks)

- 5 a. Let T be a linear operator on the finite dimensional space V. Let $C_1 cdots C_k$ be the distinct characteristic values of T and let W_i be the space of characteristic vectors associated with the characteristic value C_i . If $W = W_1 + \ldots + W_k$, then prove that dim $W = \dim W_1 + \ldots + \dim W_k$. Also show that if B_i is an ordered basis for W_i , then $B = (B_1 cdots B_k)$ is an ordered basis for W.
 - b. Let T be a linear operator on an n-dimensional vector space V(or let A be an n × n matrix). Show that the characteristic and minimal polynomials for T have the same roots, except for multiplication.

 (07 Marks)
 - c. Let W be an invariant subspace for T. Then prove the following:
 - i) The characteristic polynomial for the restriction operator T_w divides the characteristic polynomial for T
 - ii) The minimal polyn9omial for T_w divides the minimal polynomial for T. (06 Marks)
- 6 a. Construct an orthogonal basis for W given

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_{2} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}. \tag{10 Marks}$$

b. Find the QR factorization of

b.

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$
 (10 Marks)

7 a. Find a least –square solution for $A_x = b$ for

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}.$$
 (12 Marks)

For any linear operator T on a finite dimensional inner product space V, show that there exists a unique linear operator T^* on V such that $(T\alpha | \beta) = (\alpha | T^* \beta)$ for all $\alpha, \beta \in V$.

(08 Marks)

- 8 a. Convert the quadratic form $Q(x) = x_1^2 8x_1x_2 5x_2^2$ into quadratic form with no cross products. (07 Marks)
 - b. Let $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$. Find the maximum value of the quadratic form $x^T A x$ subject to the

constraint $x^Tx = 1$ and find a unit vector at which this maximum value is attained. (07 Marks)

c. Find the maximum and minimum values of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to $x^Tx = 1$.